Evaluation of Ethane as a Power Conversion System Working Fluid for Fast Reactors
نویسندگان
چکیده
A supercritical ethane working fluid Brayton power conversion system is evaluated as an alternative to carbon dioxide. The HSC® chemical kinetics code was used to study thermal dissociation and chemical interactions for ethane and other coolants under a variety of conditions. The NIST database was used for reaction rates. Overall results were not conclusive. The supercritical behavior of ethane at high pressures is not well documented, and the recombination rates of its dissociation reactions could prove very important. Ethane is known to crack into ethylene, but computer simulations show that it can, at equilibrium, also form significant amounts of hydrogen and methane. These reactions cracked more than 25% of the ethane above 3000 C, even though high (20 MPa) pressure significantly reduced dissociation compared to results at 0.1 MPa. At high pressure it appears that ethane might recombine much faster than it dissociates, which would be highly advantageous. Further research and experimentation is encouraged. Simple experiments should be sufficient to identify the behavior of ethane at high temperatures and pressures. Ethane was calculated to have better heat transfer properties than carbon dioxide. In particular, heat exchanger sizes could be reduced by as much as a factor of three. On the other hand, more turbomachinery stages are needed. A simple experiment is proposed to determine whether recombination under compressor inlet conditions is sufficiently fast and complete to make the use of ethane a practical proposition. The chemical reaction of ethane with sodium, while it generates hydrogen, is endothermic, which may quench the reaction in the event of small heat exchanger leakage. Thesis Supervisor: Professor Michael Driscoll Title: Professor Emeritus of Nuclear Science and Engineering
منابع مشابه
Implementation of neutron radiography in the MNSR Low Power Research Reactor
Neutron radiography is an unique, advanced and useful non-destructive test method in various industries and researches. Nuclear reactors are powerful and stable neutron sources for the neutron radiography system. In this research, the MNSR research reactor has been used as a neutron source for a neutron radiography system, and its neutron beam parameters have been evaluated. Also, using the dir...
متن کاملBioreactor Scale-up for Water-Gas Shift Reaction
A scale-up study has been performed with three different size reactors to establish the optimum operating conditions for the hydrogen production from synthesis gas by biological water-gas shift reaction using the photosynthetic bacterium Rhodosprilliunt rubrum. Optimum medium composition and operating conditions previously determined in a bench scale 1.25 L continuous stirred tank reactor (CSTR...
متن کاملتأثیر نوع سیال عامل بر عملکرد سیستم تبرید اجکتوری
In this paper, the performance of an ejector cooling system and the effect of the following different working fluids such as water, ammonia, R134a, R141b, R12, R600 and R245fa are described and the effects of cycle parameters on the consumed heat and work and COP are studied. This cycle with the working fluid R141b has the least COP while the working fluid R₁₂ in comparison with the other worki...
متن کاملA Fuzzy Controlled PWM Current Source Inverter for Wind Energy Conversion System
In recent years, there has been a fast growth in wind energy conversion system (WECS). There are two general types of wind turbines in WECS: fixed speed wind turbines and varying speed wind turbines.Permanent magnet synchronous generator (PMSG) is one of the most attractive generators for the varying speed turbine WECS.In this paper, a fuzzy controller is proposed to control the current source ...
متن کاملImprovement of Hydrodynamics Performance of Naphtha Catalytic Reforming Reactors Using CFD
Due to high applicability of the fixed bed catalytic naphtha reforming reactors, hydrodynamic features of this kind of reactors with radial flow pattern are improved in this work by utilising computational fluid dynamics technique. Effects of catalytic bed porosity, inlet flow rate and flow regime through the bed on the flow distribution within the system are investigated.It is found that t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009